Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.238
Filter
1.
ACS Appl Bio Mater ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619913

ABSTRACT

Protective masks are critical to impeding microorganism transmission but can propagate infection via pathogen buildup and face touching. To reduce this liability, we integrated electrospun photocatalytic graphitic carbon nitride (g-C3N4) nanoflakes into standard surgical masks to confer a self-sanitization capacity. By optimizing the purine/melamine precursor ratio during synthesis, we reduced the g-C3N4 band gap from 2.92 to 2.05 eV, eliciting a 4× increase in sterilizing hydrogen peroxide production under visible light. This narrower band gap enables robust photocatalytic generation of reactive oxygen species from environmental and breath humidity to swiftly eliminate accumulated microbes. Under ambient sunlight, the g-C3N4 nanocomposite mask layer achieved a 97% reduction in the bacterial viability during typical use. Because the optimized band gap also allows photocatalytic activity under shadowless lamp illumination, the self-cleaning functionality could mitigate infection risk from residual pathogens in routine hospital settings. Both g-C3N4 and polycaprolactone demonstrate favorable biocompatibility and biodegradability, making this approach preferable over current commercially available metal-based options. Given the abundance and low cost of these components, this scalable approach could expand global access to reusable self-sanitizing protective masks, serving as a sustainable public health preparedness measure against future pandemics, especially in resource-limited settings.

2.
Am J Transplant ; 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38561059

ABSTRACT

Calcineurin inhibitors (CNIs) are essential in liver transplantation (LT); however, their long-term use leads to various adverse effects. The anti-intercellular adhesion molecule (ICAM)-1 monoclonal antibody MD3 is a potential alternative to CNI. Despite its promising results with short-term therapy, overcoming the challenge of chronic rejection remains important. Thus, we aimed to investigate the outcomes of long-term MD3 therapy with monthly MD3 monomaintenance in nonhuman primate LT models. Rhesus macaques underwent major histocompatibility complex-mismatched allogeneic LT. The conventional immunosuppression group (Con-IS, n = 4) received steroid, tacrolimus, and sirolimus by 4 months posttransplantation. The induction MD3 group (IN-MD3, n = 5) received short-term MD3 therapy for 3 months with Con-IS. The maintenance MD3 group (MA-MD3, n = 4) received MD3 for 3 months, monthly doses by 2 years, and then quarterly. The MA-MD3 group exhibited stable liver function without overt infection and had significantly better liver allograft survival than the IN-MD3 group. Development of donor-specific antibody and chronic rejection were suppressed in the MA-MD3 group but not in the IN-MD3 group. Donor-specific T cell responses were attenuated in the MA-MD3 group. In conclusion, MD3 monomaintenance therapy without maintenance CNI provides long-term liver allograft survival by suppressing chronic rejection, offering a potential breakthrough for future human trials.

3.
Dent Traumatol ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38576359

ABSTRACT

BACKGROUND AND AIM: Various patterns of alcohol consumption are associated with trauma and violence. The aim of this study was to assess the association between traumatic dental injuries (TDI) due to violence and different patterns of alcohol consumption in Korean adults. MATERIALS AND METHODS: A cross-sectional study was conducted with representative sample of Korean adults. Among the total participants, 11.8% (6489/58,999) experienced TDI, and 0.9% (520/58,999) experienced TDI due to violence. The associations between various types of alcohol consumption (frequency of drinking, frequency of binge drinking, age of first drinking) and TDI due to violence were assessed using logistic regression analyses. We confirmed differences in the prevalence experience of TDI due to violence with various types of alcohol consumption by confounders (socioeconomic status). RESULTS: All types of drinking (frequency of drinking, frequency of binge drinking, age of first drinking) were strongly associated with TDI due to violence. After adjusting for confounders, those who started drinking at the age of 18 or younger and drank 4 or more days a week (OR: 2.86, 95% CI: 1.68-4.88), those who started drinking at the age of 18 or younger and drank 3 days or less a week (OR: 2.37, 95% CI: 1.40-4.02), and those who started drinking at the age of 18 or younger and binge drinking at least once a week (OR: 3.18, 95% CI: 1.79-5.65) had higher prevalence of TDI due to violence compared to those with no alcohol drinking. CONCLUSIONS: This study presents evidence of an association between various types of alcohol consumption and TDI due to violence in Korean adults. These findings suggest the necessity for policies aimed at reducing alcohol consumption, frequency of drinking, and access to drinking especially in adolescent to reduce the prevalence experience of TDI due to violence.

4.
Heliyon ; 10(7): e28435, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560225

ABSTRACT

The intricate interplay between the gut microbiota and bone health has become increasingly recognized as a fundamental determinant of skeletal well-being. Microbiota-derived metabolites play a crucial role in dynamic interaction, specifically in bone homeostasis. In this sense, short-chain fatty acids (SCFAs), including acetate, propionate, and butyrate, indirectly promote bone formation by regulating insulin-like growth factor-1 (IGF-1). Trimethylamine N-oxide (TMAO) has been found to increase the expression of osteoblast genes, such as Runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein-2 (BMP2), thus enhancing osteogenic differentiation and bone quality through BMP/SMADs and Wnt signaling pathways. Remarkably, in the context of bone infections, the role of microbiota metabolites in immune modulation and host defense mechanisms potentially affects susceptibility to infections such as osteomyelitis. Furthermore, ongoing research elucidates the precise mechanisms through which microbiota-derived metabolites influence bone cells, such as osteoblasts and osteoclasts. Understanding the multifaceted influence of microbiota metabolites on bone, from regulating homeostasis to modulating susceptibility to infections, has the potential to revolutionize our approach to bone health and disease management. This review offers a comprehensive exploration of this evolving field, providing a holistic perspective on the impact of microbiota metabolites on bone health and diseases.

5.
Clin Endosc ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38605688

ABSTRACT

Cronkhite-Canada syndrome is a rare gastrointestinal polyposis syndrome with distinctive clinical features and endoscopic findings. Diagnosis can be challenging without suspicion, and the disease carries high mortality due to complications such as infection, gastrointestinal bleeding, and malignancies. This paper presents two cases of Cronkhite-Canada syndrome occurring after coronavirus disease 2019 (COVID-19) mRNA vaccination. Both cases exhibited typical clinical findings, including hypogeusia, onychodystrophy, alopecia, and weight loss. Typical polyposis in the gastrointestinal tract was confirmed through endoscopies. As symptomatic treatment did not improve the symptoms, corticosteroids were administered, and symptoms and laboratory test results improved immediately. The patients improved upon corticosteroids tapering. These cases illustrate typical presentations of Cronkhite-Canada syndrome and the course of the disease following corticosteroid treatment. Additionally, they suggest the possibility that Cronkhite-Canada syndrome may be triggered by COVID-19 mRNA vaccination.

7.
Curr Med Sci ; 44(2): 441-449, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38561592

ABSTRACT

OBJECTIVE: This study aimed to explore the risk factors and outcomes of hypokalemia during the recovery period from anesthesia in the gynecological population. METHODS: This retrospective cohort study included 208 patients who underwent gynecological surgery at our institution between January 2021 and March 2022. Data were collected for each patient, including demographics, disease status, surgical data, and clinical information. Preoperative bowel preparation, postoperative gastrointestinal function, and electrolyte levels were compared between the two groups using propensity score matching (PSM). RESULTS: The incidence of hypokalemia (serum potassium level <3.5 mmol/L) during the recovery period from anesthesia was approximately 43.75%. After PSM, oral laxative use (96.4% vs. 82.4%, P=0.005), the number of general enemas (P=0.014), and the rate of ≥2 general enemas (92.9% vs. 77.8%, P=0.004) were identified as risk factors for hypokalemia, which was accompanied by decreased PaCO2 and hypocalcemia. There were no significant differences in postoperative gastrointestinal outcomes, such as the time to first flatus or feces, the I-FEED score (a scoring system was created to evaluate impaired postoperative gastrointestinal function), or postoperative recovery outcomes, between the hypokalemia group and the normal serum potassium group. CONCLUSION: Hypokalemia during postanesthesia recovery period occurred in 43.75% of gynecological patients, which resulted from preoperative mechanical bowel preparation; however, it did not directly affect clinical outcomes, including postoperative gastrointestinal function, postoperative complications, and length of hospital stay.


Subject(s)
Hypokalemia , Humans , Hypokalemia/etiology , Hypokalemia/complications , Retrospective Studies , Propensity Score , Potassium , Risk Factors
8.
Cancer Res Treat ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38637967

ABSTRACT

Purpose: Gastric cancer exhibits molecular heterogeneity, with the microsatellite instability high (MSI-H) subtype drawing attention for its distinct features. Despite a higher survival rate, MSI-H gastric cancer lack significant benefits from conventional chemotherapy. The immune checkpoint inhibitors (ICIs), presents a potential avenue, but a deeper understanding of the tumor immune microenvironment of MSI-H gastric cancer is essential. Materials and Methods: We explored the molecular characteristics of CD8+ T cell subtypes in three MSI-H and three microsatellite stable (MSS) gastric cancer samples using single-cell RNA sequencing and spatial transcriptome analysis. Results: In MSI-H gastric cancer, significantly higher proportions of effector memory T cell (Tem), exhausted T cell (Tex), proliferative exhausted T cell (pTex), and proliferative T cell were observed, while MSS gastric cancer exhibited significantly higher proportions of mucosal-associated invariant T (MAIT) cell and NKT cell. In MSI-H gastric cancer, Tex and pTex exhibited a significant upregulation of the exhaustion marker LAG3, as well as elevated expression of effector function markers such as IFNG, GZMB, GZMH, and GZMK, compared to those in MSS gastric cancer. The IFN-γ signaling pathway of Tex and pTex was retained compared to those of MSS gastric cancer. The spatial transcriptome analysis demonstrates the IFN-γ signaling pathway between neighboring Tex and malignant cell, showcasing a significantly elevated interaction in MSI-H gastric cancer. Conclusion: Our study reveals novel finding indicating that IFN-γ signaling pathway is retained in Tex and pTex of MSI-H gastric cancer, offering a comprehensive perspective for future investigations into immunotherapy for gastric cancer.

11.
Acta Biomater ; 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38561072

ABSTRACT

The reconstruction of posterior lamellar eyelid defects remains a significant challenge in clinical practice due to anatomical complexity, specialized function, and aesthetic concerns. The ideal substitute for the posterior lamellar should replicate the native tarsoconjunctival tissue, providing both mechanical support for the eyelids and a smooth surface for the globe after implantation. In this study, we present an innovative approach utilizing tissue-engineered cartilage (TEC) grafts generated from rabbit auricular chondrocytes and a commercialized type I collagen sponge to reconstruct critical-sized posterior lamellar defects in rabbits. The TEC grafts demonstrated remarkable mechanical strength and maintained a stable cartilaginous phenotype both in vitro and at 6 months post-implantation in immunodeficient mice. When employed as autografts to reconstruct tarsal plate defects in rabbits' upper eyelids, these TEC grafts successfully restored normal eyelid morphology, facilitated smooth eyelid movement, and preserved the histological structure of the conjunctival epithelium. When applied in bilayered tarsoconjunctival defect reconstruction, these TEC grafts not only maintained the normal contour of the upper eyelid but also supported conjunctival epithelial cell migration and growth from the defect margin towards the centre. These findings highlight that auricular chondrocyte-based TEC grafts hold great promise as potential candidates for clinical posterior lamellar reconstruction. STATEMENT OF SIGNIFICANCE: The complex structure and function of the posterior lamellar eyelid continue to be significant challenges for clinical reconstructive surgeries. In this study, we utilized autologous auricular chondrocyte-based TEC grafts for posterior lamellar eyelid reconstruction in a preclinical rabbit model. The TEC grafts exhibited native cartilaginous histomorphology and comparable mechanical strength to those of the native human tarsal plate. In rabbit models with either tarsal plate defects alone or bilayered tarsoconjunctival defects, TEC grafts successfully restored the normal eyelid contour and movement, as well as supported preservation and growth of conjunctival epithelium. This is the first study to demonstrate autologous TEC grafts can be employed for repairing tarsal plate defects, thereby offering an alternative therapeutic approach for treating posterior lamellar defects in clinic settings.

12.
Brain Res ; 1834: 148907, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38570153

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI), as a major public health problem, is characterized by high incidence rate, disability rate, and mortality rate. Neuroinflammation plays a crucial role in the pathogenesis of TBI. Triggering receptor expressed on myeloid cells-1 (TREM-1) is recognized as an amplifier of the inflammation in diseases of the central nervous system (CNS). However, the function of TREM-1 remains unclear post-TBI. This study aimed to investigate the function of TREM-1 in neuroinflammation induced by TBI. METHODS: Brain water content (BWC), modified neurological severity score (mNSS), and Morris Water Maze (MWM) were measured to evaluate the effect of TREM-1 inhibition on nervous system function and outcome after TBI. TREM-1 expression in vivo was evaluated by Western blotting. The cellular localization of TREM-1 in the damaged region was observed via immunofluorescence staining. We also conducted Western blotting to examine expression of SYK, p-SYK and other downstream proteins. RESULTS: We found that inhibition of TREM-1 reduced brain edema, decreased mNSS and improved neurobehavioral outcomes after TBI. It was further determined that TREM-1 was expressed on microglia and modulated subtype transition of microglia. Inhibition of TREM-1 alleviated neuroinflammation, which was associated with SYK/p38MAPK signaling pathway. CONCLUSIONS: These findings suggest that TREM-1 can be a potential clinical therapeutic target for alleviating neuroinflammation after TBI.

13.
PLoS One ; 19(4): e0290202, 2024.
Article in English | MEDLINE | ID: mdl-38573996

ABSTRACT

Verifying habitats, including the foraging and nesting areas for sea turtles, enables an understanding of their spatial ecology and successful planning of their conservation and management strategies. Recently, the observation frequency and bycatch of loggerhead (Caretta caretta) and green (Chelonia mydas) turtles have increased in the northern limit of their distribution range, in the northern part of the East China Sea and East (Japan) Sea. We conducted satellite tracking to investigate the habitat use of seven loggerhead and eight green turtles from June 2016 to August 2022 in this area, where little is known about their spatial ecology. We applied a 50 percent volume contour method to determine their main foraging areas and analyzed 6 environmental variables to characterize their habitats. Loggerhead turtles mainly stayed in and used the East China Sea as a foraging area during the tracking period, while two individuals among them also used the East Sea as a seasonal foraging area. Most green turtles also used the East China Sea as a foraging area, near South Korea and Japan, with one individual among them using the lower area of the East Sea as a seasonal foraging area. Notably, one green turtle traveled to Hainan Island in the South China Sea, a historical nesting area. Our results showed that the two sea turtle species included the East Sea as a seasonal foraging area, possibly owing to the abundance of food sources available, despite its relatively lower sea temperature. Considering that loggerhead and green sea turtles were observed using the northern part of the East China Sea and East Sea more frequently than previously known and that the sea temperature gradually increases due to climate change, conservation and management activities are required for sea turtles in these areas.


Subject(s)
Turtles , Humans , Animals , Pacific Ocean , Ecosystem , Ecology , Temperature
14.
J Appl Stat ; 51(5): 809-825, 2024.
Article in English | MEDLINE | ID: mdl-38524791

ABSTRACT

This article proposes a performance measure to evaluate the detection performance of a control chart with a given sampling strategy for finite or small samples sequence and prove that the CUSUM control chart with dynamic non-random control limit and a given sampling strategy can be optimal under the measure. Numerical simulations and real data for an earthquake are provided to illustrate that for different sampling strategies, the CUSUM chart will have different monitoring performance in change-point detection. Among the six sampling strategies that take only a part of samples, the numerical comparing results illustrate that the uniform sampling strategy (uniformly dispersed sampling strategy) has the best monitoring effect.

15.
Int J Oral Sci ; 16(1): 25, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38480698

ABSTRACT

Human with bi-allelic WNT10A mutations and epithelial Wnt10a knockout mice present enlarged pulp chamber and apical displacement of the root furcation of multi-rooted teeth, known as taurodontism; thus, indicating the critical role of Wnt10a in tooth root morphogenesis. However, the endogenous mechanism by which epithelial Wnt10a regulates Hertwig's epithelial root sheath (HERS) cellular behaviors and contributes to root furcation patterning remains unclear. In this study, we found that HERS in the presumptive root furcating region failed to elongate at an appropriate horizontal level in K14-Cre;Wnt10afl/fl mice from post-natal day 0.5 (PN0.5) to PN4.5. EdU assays and immunofluorescent staining of cyclin D1 revealed significantly decreased proliferation activity of inner enamel epithelial (IEE) cells of HERS in K14-Cre;Wnt10afl/fl mice at PN2.5 and PN3.5. Immunofluorescent staining of E-Cadherin and acetyl-α-Tubulin demonstrated that the IEE cells of HERS tended to divide perpendicularly to the horizontal plane, which impaired the horizontal extension of HERS in the presumptive root furcating region of K14-Cre;Wnt10afl/fl mice. RNA-seq and immunofluorescence showed that the expressions of Jag1 and Notch2 were downregulated in IEE cells of HERS in K14-Cre;Wnt10afl/fl mice. Furthermore, after activation of Notch signaling in K14-Cre;Wnt10afl/fl molars by Notch2 adenovirus and kidney capsule grafts, the root furcation defect was partially rescued. Taken together, our study demonstrates that an epithelial Wnt10a-Notch signaling axis is crucial for modulating HERS cell proper proliferation and horizontal-oriented division during tooth root furcation morphogenesis.


Subject(s)
Tooth Root , Tooth , Humans , Female , Mice , Animals , Tooth Root/metabolism , Odontogenesis/genetics , Signal Transduction , Dental Enamel , Epithelial Cells , Nerve Tissue Proteins/metabolism , Wnt Proteins/metabolism
16.
Adv Sci (Weinh) ; : e2306684, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38482992

ABSTRACT

Cryotherapy leverages controlled freezing temperature interventions to engender a cascade of tumor-suppressing effects. However, its bottleneck lies in the standalone ineffectiveness. A promising strategy is using nanoparticle therapeutics to augment the efficacy of cryotherapy. Here, a cold-responsive nanoplatform composed of upconversion nanoparticles coated with silica - chlorin e6 - hyaluronic acid (UCNPs@SiO2 -Ce6-HA) is designed. This nanoplatform is employed to integrate cryotherapy with photodynamic therapy (PDT) in order to improve skin cancer treatment efficacy in a synergistic manner. The cryotherapy appeared to enhance the upconversion brightness by suppressing the thermal quenching. The low-temperature treatment afforded a 2.45-fold enhancement in the luminescence of UCNPs and a 3.15-fold increase in the photodynamic efficacy of UCNPs@SiO2 -Ce6-HA nanoplatforms. Ex vivo tests with porcine skins and the subsequent validation in mouse tumor tissues revealed the effective HA-mediated transdermal delivery of designed nanoplatforms to deep tumor tissues. After transdermal delivery, in vivo photodynamic therapy using the UCNPs@SiO2 -Ce6-HA nanoplatforms resulted in the optimized efficacy of 79% in combination with cryotherapy. These findings underscore the Cryo-PDT as a truly promising integrated treatment paradigm and warrant further exploring the synergistic interplay between cryotherapy and PDT with bright upconversion to unlock their full potential in cancer therapy.

17.
Chin J Dent Res ; 27(1): 53-63, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38546520

ABSTRACT

OBJECTIVE: To investigate FAM20A gene variants and histological features of amelogenesis imperfecta and to further explore the functional impact of these variants. METHODS: Whole-exome sequencing (WES) and Sanger sequencing were used to identify pathogenic gene variants in three Chinese families with amelogenesis imperfecta. Bioinformatics analysis, in vitro histological examinations and experiments were conducted to study the functional impact of gene variants, and the histological features of enamel, keratinised oral mucosa and dental follicle. RESULTS: The authors identified two nonsense variants c. 406C > T (p.Arg136*) and c.826C > T (p.Arg176*) in a compound heterozygous state in family 1, two novel frameshift variants c.936dupC (p.Val313Argfs*67) and c.1483dupC (p.Leu495Profs*44) in a compound heterozygous state in family 2, and a novel homozygous frameshift variant c.530_531insGGTC (p.Ser178Valfs*21) in family 3. The enamel structure was abnormal, and psammomatoid calcifications were identified in both the gingival mucosa and dental follicle. The bioinformatics and subcellular localisation analyses indicated these variants to be pathogenic. The secondary and tertiary structure analysis speculated that these five variants would cause structural damage to FAM20A protein. CONCLUSION: The present results broaden the variant spectrum and clinical and histological findings of diseases associated with FAM20A, and provide useful information for future genetic counselling and functional investigation.


Subject(s)
Amelogenesis Imperfecta , Dental Enamel Proteins , Humans , Amelogenesis Imperfecta/genetics , Calcification, Physiologic , Computational Biology , Dental Enamel , Dental Enamel Proteins/genetics , East Asian People
18.
Article in English | MEDLINE | ID: mdl-38499254

ABSTRACT

PURPOSE: One main advantage of proton therapy versus photon therapy is its precise radiation delivery to targets without exit dose, resulting in lower dose to surrounding healthy tissues. This is critical, given the proximity of head and neck tumors to normal structures. However, proton planning requires careful consideration of factors, including air-tissue interface, anatomic uncertainties, surgical artifacts, weight fluctuations, rapid tumor response, and daily variations in setup and anatomy, as these heterogeneities can lead to inaccuracies in targeting and creating unwarranted hotspots to a greater extent than photon radiation. In addition, the elevated relative biological effectiveness at the Bragg peak's distal end can also increase hot spots within and outside the target area. METHODS AND MATERIALS: The purpose of this study was to evaluate for a difference in positron emission tomography (PET) standard uptake value (SUV) after definitive treatment, between intensity modulated proton therapy (IMPT) and intensity modulated photon therapy (IMRT). In addition, we compared the biologic dose between PET areas of high and low uptake within the clinical target volume-primary of patients treated with IMPT. This work is assuming that the greater SUV may potentially result in greater toxicities. For the purposes of this short communication, we are strictly focusing on the SUV and do not have correlation with toxicity outcomes. To accomplish this, we compared the 3- and 6-month posttreatment fluorodeoxyglucose PET scans for 100 matched patients with oropharyngeal cancer treated definitively without surgery using either IMPT (n = 50) or IMRT (n = 50). RESULTS: Our study found a significant difference in biologic dose between the high- and low-uptake regions on 3-month posttreatment scans of IMPT. However, this difference did not translate to a significant difference in PET uptake in the clinical target volume-primary at 3 and 6 months' follow-up between patients who received IMPT versus IMRT. CONCLUSIONS: Studies have proposed that proton's greater relative biological effectiveness at the Bragg peak could lead to tissue inflammation. Our study did not corroborate these findings. This study's conclusion underscores the need for further investigations with ultimate correlation with clinical toxicity outcomes.

19.
Int J Biol Macromol ; 265(Pt 1): 130696, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458288

ABSTRACT

There has been significant progress in the field of three-dimensional (3D) bioprinting technology, leading to active research on creating bioinks capable of producing structurally and functionally tissue-mimetic constructs. Ti3C2Tx MXene nanoparticles (NPs), promising two-dimensional nanomaterials, are being investigated for their potential in muscle regeneration due to their unique physicochemical properties. In this study, we integrated MXene NPs into composite hydrogels made of gelatin methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) to develop bioinks (namely, GHM bioink) that promote myogenesis. The prepared GHM bioinks were found to offer excellent printability with structural integrity, cytocompatibility, and microporosity. Additionally, MXene NPs within the 3D bioprinted constructs encouraged the differentiation of C2C12 cells into skeletal muscle cells without additional support of myogenic agents. Genetic analysis indicated that representative myogenic markers both for early and late myogenesis were significantly up-regulated. Moreover, animal studies demonstrated that GHM bioinks contributed to enhanced regeneration of skeletal muscle while reducing immune responses in mice models with volumetric muscle loss (VML). Our results suggest that the GHM hydrogel can be exploited to craft a range of strategies for the development of a novel bioink to facilitate skeletal muscle regeneration because these MXene-incorporated composite materials have the potential to promote myogenesis.


Subject(s)
Hydrogels , Nanoparticles , Nitrites , Transition Elements , Mice , Animals , Hydrogels/pharmacology , Hydrogels/chemistry , Gelatin/chemistry , Printing, Three-Dimensional , Glycosaminoglycans , Muscle, Skeletal , Tissue Scaffolds/chemistry , Tissue Engineering/methods
20.
Mitochondrial DNA B Resour ; 9(3): 398-402, 2024.
Article in English | MEDLINE | ID: mdl-38545569

ABSTRACT

The humped rockcod, Gobionotothen gibberifrons, is an Antarctic fish of the genus Gobionotothen in the family Nototheniidae and order Perciformes. To date, little biological information has been recorded about the genus Gobionotothen. Here, we report the first complete mitogenome of the genus Gobionotothen. The mitochondrial genome of G. gibberifrons is 18,631 bp in length, comprising 13 protein-coding genes, 24 tRNA genes (trnP-UGG and trnT-UGU were duplicated), 2 rRNA genes, and non-coding control regions. The base composition was 53.74% for A + T and 46.26% for G + C. This new mitochondrial genome of G. gibberifrons provides basic information for further phylogenetic analysis, suggesting the necessity to exploit a variety of newly discovered mitogenome sequences to infer inconclusive evolutionary relationships in Antarctic fishes.

SELECTION OF CITATIONS
SEARCH DETAIL
...